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NOTATION

a Focal distance of the elliptic body contour

A, B Integration constants defined in Equation (4)

C D Drag coefficient

CDF' CDP Drag coefficient due to friction, pressure

d Width of the ellipse = a cosh 77

K Constant defined in Equation (5)

n, s Intrinsic coordinates

p Pressure

r, 0 Spherical polar coordinates in the meridional plane

Re Reynolds number = d Up/p.

sl 'Wake length

tv Time

t Dimensionless time = t' U/a

vy Surface velocity made dimensionless by U

x, y Cartesian coordinates

u Velocity component along streamline

U Constant velocity far away from the body

a Angle of attack

77•8 Elliptic coordinates, x + iy = a cosh(77+i@)

77, e Oblate spheroidal coordinates, x+iy = a sinh(t +0i)

K Curvature of streamlines

Dynamic viscosity

p Density

1=Shear stress along streamline

Stream function

Vorticity

Subscript

1 Body surface
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ABSTRACT

Current experiments conducted at Dornier System

on special solid-surface treatment have prompted a

study on the fluid dynamic implications of perfect-

slip flow. Numerical results on incompressible fluid

,flows past thin elliptic cylinders at various angles of

attack and at moderate Reynolds numbers show that

flw separation, instability, and vortex shedding occur

also under the perfect-slip condition. Of particular

interest is the generation and spreading of an initial

vortex after the abrupt start of an airfoil. The circu-

lation theory of lift for potential flows is also applicable

to perfect slip. Thus, lift exists so that flying under

perfect slip is possible.
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uber Gas-Oberflachen-Wechselwirkung, " May 3-5, 1972, Meersburg,

Lake Constance, Germany, sponsored by the German Ministry of Defense

and organized by Dornier System, Friedrichshafen.

1



INTRODUCTION

A few years ago Sydney Goldstein remarked that, if a fluid could

slip freely over the surface of a solid body, the world would be very
1

different. Would it really be? To give a partial answer to this

question some computer experiments have been made which simulate

a viscous fluid flowing past a cylindrical body under the perfect-slip

condition. Perfect slip is the limiting case of slippage when the shear

stress at the solid surface vanishes. This is a hypothetical situation

since slip flow of a Newtonian fluid still awaits verification in reality.

Only the availability of electronic computers enables us to simulate

such an imaginary flow. It is not the purpose of this paper to argue

about whether and how slip flow can be obtained within the realm of

continuum physics where the mean free path is very small with respect

to the body length. Apart from problems in the rarefied-gas regime

or from certain cases of non-Newtonian liquids (for instance, Bingham

bodies) where slippage is known to exist, a renewed interest has arisen

in how to obtain slip flow for a Newtonian continuum. An outgrowth of

this effort is the present Symposium. Interest in such a slip flow

was also the incentive for this study. Some numerical results on

vorticity production and propagation under perfect slip have been

published already. 2

1 References are listed on page 17.
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VORTICITY PRODUCTION ON THE BODY

In a homogeneous incompressible fluid without nonconservative

forces acting, vorticity can be produced only at the body surface. By

using intrinsic coordinates s, n for plane or axisymmetric motions,

where s coincides with the streamlines, and n is orthogonal to s,

the vorticity• W and the shear stress T on a streamline are functions

of the velocity u along n = const:

S~+u , (1)ý-- + K U,a" n

U KU, (2)

where ps is the dynamic viscosity and K the curvature of the streamline.

Under the nonslip pondition, u 0 0 at the body surface n= nl,

Equations (1) and (2) reduce to w T= '/ - u/a n. Under the perfect-

slip condition, ,r T 0 on n = nl, the vorticity is w = 2 K u. Hence,

vorticity occurs at the surface under perfect slip only for K j 0. Since

every cylindrical body with a closed line contour of its cross-section,

and every axisymmetric body with a closed surface contour, must have

areas (or points) with nonvanishing curvature, vorticity will always be

generated under perfect slip at those bodies,

The rate of transport of Vorticity from the surface n = n into

the fluid is proportional to (a / n)l. This term, and not the vorticity

Wl itself, enters the equation for the surface pressure p1 and, hence,

participates in determining drag, lift, and torque. The relation between

Pl and (a w/a/n)l follows from the s-component of the Navier-Stokes
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equation:

SP-u + u -g-.) + A '- ds, (3)

surface fn

where p is the density of the fluid and t' the time. Under perfect slip

the term (Ow/an) 1 can differ from zero on a flat part of the surface,

where K = 0 and therefore w, = 0. In this case vorticity inside the

fluid is provided from other areas of the surface where K j 0. The

only case for which w, / 0 but (aw/6n)l =_ 0 is the solid-body rotation.

No exchange of vorticity takes place. The vorticity is "frozen" inside

the fluid. There is no dissipation.

Two well-known analytic solutions may illustrate the role of vorticity

production in determining drag. For the steady flow past a sphere of

unit radius at vanishing Reynolds number Re = 2Up/g, the stream

function 0 and the azimuthal vorticity w are

Uv 2 B 2 AU
"- - sin 4 (Ary + r = sin , (4)r r -2

r

where r, 4 are the spherical polar coordinates in the meridional plane.

U is the velocity at infinity. The integration constants A and B are

A=-3/2, B= 1/2 for nonslip and A = -1, B =0 for perfect slip. 3

The drag coefficient CD (the sum of CDF and CDP where CDF and

C DP are the portions due to friction and pressure, respectively) is

2
defined by CD = Drag/(p/2) 7rU. Then, for

Nonslip: C DRe =24, C DFRe = 16, C DpRe = 8,

Perfect slip: CDRe = 16, C DFRe = 0, C DPRe = 16.

Hence, the total drag coefficient for perfect slip is tremendous, 2/3

that for nonslip. C itself is even twice as large for perfect slip
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although (6w/6r) 1 is smaller. The larger C DP-value is due to the
contribution of the surface velocity in Equation (3).

If the sphere is flattened to an oblate spheroid, an analytic solution

for vanishing Reynolds number exists (Oberbeck solution 3). In oblate

spheroidal coordinates 7-, 5 for the meridional plane with

x + iy= a sinh(i + is), 0 and w are, for nonslip,

Co s i1 sinh n - cot sinhj)J],•)__._Ucosh__s-12 [1_

2 cosh2 ýj scosh 2 cosh2

2U sin tanh

K coshi•j cosh 7 - sin e

where the focal distance a is chosen in such a way that the oblate spheroid

has unit radius, that is, a = 1/coshil . The surface of the body is

?= z The constant K is

1 [sinh 1 - (sinh2 1 - 1) cot- 1 sinh 1
K = cosh2[1

For the flat disk ý1 = 0 we observe the following curious situation:

Except at the edge the surface vorticity is zero and, therefore, the

shear stress is zero, whereas (aw/a) 1 j 0 in general. The total

vorticity field is generated at the focal point which for ý1 = 0 coincides

with the edge. The situation is illustrated in Figure 1 for the fat oblate

spheroid -1 = 0. 5 to show the lines of constant vorticity inside the body.

Notice that (•w/b)l changes its sign along the surface. Near the

centerline vorticity is transported from the fluid to the body. Around

the edge vorticity emanates from the surface. For ý1 0 this region

is confined to the edge.



Figure 1. Lines of Constant Vorticity for an Oblate Spheroid

77= 0. 5 at Re = 0 Under Nonslip

Under the perfect-slip condition the solution is not separable, and

an analytic integral could not be obtained. A numerical solution was

therefore constructed for ýj = 0. 05. (The numerical procedure breaks

down for N = 0.) The drag coefficients are:

Nonslip, 1 =0 C Re = 20.372 C 0,71D 'DF

Nonslip, = 0. 05: C DRe = 20. 395, C = 1. 504,

Perfect slip, i1 = 0.05: C DRe 28 , CDF 0.

Although the numerical value for perfect slip is very crude, the result

shows that, as in the case of the sphere flow, C is greater for

perfect slip than for nonslip.
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FLOW BEHAVIOR UNDER PERFECT SLIP

The study of flows past bodies for nonvanishing Reynolds numbers

requires the use both of numerical methods and of electronic computers.

An existing computer code4 for moderate Reynolds.numbers has been

employed to calculate two-dimensional laminar flows of an incompressible

fluid past elliptic cylinders under perfect slip. Some data have been

..published already so that the results reported here may be considered

as complements.

In this computer code the elliptic cylinder is imbedded in a network

of points which are the intersections of constant elliptic coordinate lines.

The elliptic coordinates 77, a are related to the Cartesian coordinates

x,y by

x+ iy= acosh(n + ie), a>,O, (6)

where a is the focal distance. The body contour is given'by 77 =71

(Figure 2).

E,)= const V
_-ons,

Figure 2.. Elliptic Coordinate System and Definition of Angle
of Attack a .
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The Reynolds number is defined by Re = dUp/p with d = a cosh 77,

The calculation starts with a potential flow as initial condition at

t =t'U/a = 0.

The following examples have been selected:

Ct = 00, Re = 200, til = 0. 1, symmetric, almost steady flow

* = 900, Re = 10, ?71 = 0. 1, symmetric, almost steady flow

* = 450, Re = 200, i77=0. 05, asymmetrictransient flow

Flows past thin elliptic cylinders under perfect slip show the largest

divergence from those under nonslip when a= 00. The reason is that,

under nonslip, friction drag predominates over pressure drag. Under

perfect slip, however, friction drag is zero by definition. For a = 0,

Re = 200, 77l = 0. 1 the drag coefficient under perfect slip is 1/60 of that

under nonslip2 , and the surface velocity v9 (made dimensionless by U)

comes quite close to that of potential flow (see Figure 3). The velocity

profile normal to the surface at e = 7/4, where the 77-coordinate

coincides with the y-axis in Figure 2, reveals that flow under perfect slip

approaches the potential flow away from the body much sooner than flow

under nonslip (Figure 4). This indicates, if extrapolation to larger

Reynolds number is allowed, that the boundary layer under perfect slip

is thinner than that under nonslip.

Blunt bodies or plates perpendicular to the main flow behave

differently. As already indicated in the solutions for Re = 0, the drag

coefficients for motions under perfect slip and under nonslip are of the

same order. Figure 5 shows the transient stage of a flow normal to a

thin elliptic cylinder. The drag coefficient, which is defined here by

CD = Drag/(p/2)dU 2, is plotted against t for a = 90 , Re = 10, 771 = 0. 1.
Only a slight difference between nonslip and perfect slip is observed.

The surface velocity, which is plotted in Figure 6, deviates considerably

from that of potential flow. The occurrence of a negative velocity in the

8
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wake points to flow separation, which is verified in Figure 7. Actually,

the flow patterns in Figure 7 are almost the same as those for motions
5.

under nonslip (see streamline and vorticity patterns )- This

result is surprising since we expect perfect-slip flow to behave much

like potential flow. The development of the wake is recorded in Figure 8,

where the dimensionless wake length s'/d is plotted against time.

Experimental data from Taneda6 and Taneda and Honji7 are included in

the graph. Their results are discussed by 'Lugt and Haussling. 4

GENERATION OF LIFT UNDER PERFECT SLIP

Classical aerodynamics explains the generation and maintenance of

lift of an airfoil by means of the Lanchester-Prandtl hypothesis After

the abrupt start of the body a vortex at the trailing edge develops and

separates, leaving behind a bound vortex of equal strength but opposite

rotation around the airfoil. Mathematically, a circulation around the

airfoil is superposed on the potential-flow solution. This circulation

gives rise to a lift force whose magnitude is determined by the Kutta

condition at the trailing edge. Since no consideration of viscosity is

required in this model (in contrast to the drag force), the nonslip condition

of a viscous fluid cannot be applied. The model has been proved to be

remarkably good for high Reynolds-number flows. Even for Reynolds

numbers as low as 200 the essential features of the model are observed. 4

If it can be shown that flow under perfect slip satisfies the Kutta

condition (in the form extended to viscous fluids), the Lanchester-Prandtl

hypothesis must also be valid for perfect-slip flow. The fulfillment of
2

the Kutta condition for perfect-slip flow has been demonstrated

for Re = 200, a = 45°. Assuming that this result is valid for higher

Reynolds numbers too, we arrive at the important conclusion that the

classical airfoil theory is applicable to perfect slip flow. This statement

11



Figure 7. Streamline Patterns for a= 900, Re =10, =0. 1 under
Perfect Slip at Almost Steady State.

s/dNOSI

o R E DA1 , NONSLIP

0 Re - 10, PERECTSLIP

0 Re - 50,NOSI
0 Re - 50, PERFECT SLIP

0.1

0.04

0 -0.4 1 4 10 40 100
t/2

Figure 8. Development of Wake after the Abrupt Start at t =0.
s?/d is Plotted Against t/2.
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covers three-dimensional effects since the trailing vortices at the tips

of the wings exist also under perfect slip. Thus, an airplane can fly

under perfect slipl

Let us consider the initial phase of the process during which the
2

Kutta condition is established and which is not covered by Lugt. The

following description holds for both nonslip and perfect slip.

At t = 0 a potential flow around a thin elliptic cylinder for a = 450 is

assumed without circulation (Figure 9), There is no lift (and no drag).

At this instant the initial irrotational disturbance caused by the sudden

motion of the body is felt immediately everywhere but vorticity has not yet

started to propagate. The generation of a discontinuity sheet for the

vorticity on the body surface at t = 0 causes an infinite lift and drag force.

Subsequently, the sheet spreads out to a boundary layer, and the lift and

drag force drop to finite values. (In L.ugt, _-,last parxagraph, a~difference

was reported between perfect slip and nonslip. It was found that the

numerical result for perfect slip just after t = 0 is not physically realistic

but is the result of the numerical scheme.)

With time inertia carries vorticity from',the boundary layer down

stream. This causes the rear separation point of the zero streamline

to move towards the trailing edge. Thus, the Kutta condition becomes

fulfilled at about t = 0. 4 (Figure 9). For sufficiently high Reynolds

number (observed for Re = 200) the vorticity field forms a local extremum

behind the trailing edge which may be interpreted as the starting vortex

(Figure 10). However, for Re = 15 and 30 under nonslip, no extremum

of the vorticity is observed, although the Kutta condition is satisfied.

Diffusion of vorticity dominates here over convection. The Lanchester-

Prandtl hypothesis does not hold for this low Reynolds-number flow. It

must be emphasized that for all Reynolds numbers the ultimate cause of

lift (and drag) is the generation of the vorticity sheet at t = 0.

The streamlines associated with the vorticity extremum are wavy

(Figure 9). They represent a vortex moving relative to the reference

frame, that is, relative to the body.

13
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CONCLUSIONS

Perfect-slip flow, if it can ever be approached in reality, differs

drastically from nonslip flow when the motion under the nonslip condition

is such that the shear stress on the solid wall dominates over the pressure

force. Slender bodies parallel to the main stream, fluid motion in

capillaries and pipes, and rotating devices such as ball bearings, would

benefit most from the slip condition in that drag and pressure loss would

be greatly reduced. On the other hand, flows past blunt bodies (and

large displacements of fluid in general) are not greatly affected by the

change in the surface condition. Classical airfoil theory cannot distinguish

between nonslip and perfect slip since the Kutta condition is satisfied for

both types of motions. Flow separation, vortex shedding, and instability

(which is not explicitly mentioned in this paper, but which precedes

vortex shedding) are phenomena which also occur under perfect slip.

This implies that turbulent boundary layers at high Reynolds numbers

must exist. Turbulence generated away from solid surfaces is, of course,

not affected by the slip condition. Turbulence dominates in fluid phenomena

in technology and in our every day life. Thus, returning to Goldstein's

remark cited in the introduction, that the world would be very different

under slippage, perhaps it would be to a certain extent, but not as much

as Goldstein might have envisioned. Until perfect-slip flow is verified

experimentally, its implications for the world in which we live would

make a good subject for science fiction.
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